Sains Malaysiana 52(10)(2023): 2919-2930

http://doi.org/10.17576/jsm-2023-5210-14

 

Kesan Penambahan Nanohidroksiapatit ke dalam Simen Ionomer Kaca terhadap Morfologi dan Sifat Biologi Bahan

(Effects of Incorporating Nanohydroxyapatite into Glass Ionomer Cement towards the Morphology and Biological Properties of the Material)

 

RISHNNIA MURUGAN1, NUR NAJMI MOHAMAD ANUAR1, NURRUL SHAQINAH NASRUDDIN2 & FARINAWATI YAZID3,*

 

1Program Sains Bioperubatan, Pusat Pengajian Toksikologi & Risiko Kesihatan, Fakulti Sains Kesihatan, Universiti Kebangsaan Malaysia, 50300 Kuala Lumpur, Malaysia

2Jabatan Diagnostik Kraniofasial dan Biosains, Fakulti Pergigian, Universiti Kebangsaan Malaysia, 50300 Kuala Lumpur, Malaysia

3Jabatan Kesihatan Pergigian Keluarga, Fakulti Pergigian, Universiti Kebangsaan Malaysia, 50300 Kuala Lumpur, Malaysia

 

Received: 12 June 2023/Accepted: 10 October 2023

 

Abstrak

Simen kaca ionomer merupakan bahan pemulih yang digunakan secara meluas dalam     bidang pergigian. Namun, ia mempunyai beberapa kelemahan yang mengehadkan penggunaannya sebagai bahan restoratif. Nanohidroksiapatit (nHA) adalah bahan tambahan yang digunakan dalam simen kaca ionomer bagi mengatasi kelemahannya. Penyelidikan ini bertujuan untuk mengkaji kesan penambahan nHA ke dalam simen kaca ionomer terhadap morfologi dan sifat biologi bahan melalui pemerhatian mikroskop imbasan elektron (SEM), ujian kesitotoksikan dan antibakteria. Bagi kesitotoksikan nHA terhadap sel MC3T3-E1, sebanyak empat peratus kepekatan nHA yang berbeza digunakan dalam asai MTT iaitu 0%, 3%, 4% dan 5% selama 24 dan 48 jam. Hasilnya, kesemua kepekatan nHA yang digunakan tidak menunjukkan kesan sitotoksik terhadap sel MC3T3-E1 dengan 4% nHA merekodkan keviabelan sel yang tinggi pada 24 dan 48 jam. Ujian antibakteria terhadap bakteria Streptococcus mutans dilakukan dengan ujian cakera difusi bagi tempoh 24 jam menunjukkan bahawa sampel yang ditambah dengan 4% nHA mempunyai sifat  antibakteria yang lebih baik dengan merekodkan saiz zon perencatan yang besar berbanding dengan sampel simen kaca ionomer sahaja. Berdasarkan pemerhatian morfologi SEM, rekahan dan zarah nHA yang        berbentuk bulat dapat dilihat pada simen yang ditambah dengan 4% nHA. Bagi analisis Serakan Tenaga Sinar-X (EDX), penambahan 4% nHA meningkatkan peratusan unsur atom kalsium, aluminium, silikon, fosforus dan fluorin. Penggabungan 4% nHA ke dalam simen kaca ionomer menyerlahkan morfologi simen dan meningkatkan sifat biologinya, justeru, ia sesuai digunakan sebagai bahan tambahan dalam simen kaca ionomer.

 

Kata kunci: Antibakteria; kesitotoksikan; morfologi; nanohidroksiapatit; simen kaca ionomer

 

Abstract

Glass ionomer cement (GIC) is widely used in clinical dentistry as a restorative material. However, GIC possesses some weakness that limits its usage. Nanohydroxyapatite (nHA) is an additive used in GIC to improve its properties. This study aims to determine the effects of incorporating nHA into GIC on the morphology and biological properties of the material through scanning electron microscopy (SEM), cytotoxicity and antibacterial. For the cytotoxicity of nHA towards MC3T3-E1 cells, four different concentrations of nHA were used in the MTT assay, namely 0%, 3%, 4% and 5% for 24 and 48 h. Based on the results, all the concentrations of nHA used did not show cytotoxic effects on cells in which GIC with 4% nHA showed the highest viability at both 24 and 48 h. The antibacterial property of 4% nHA incorporated GIC against Streptococcus mutans bacteria was determined using a disk diffusion test for 24 h showing that GIC with a 4% nHA sample had greater antibacterial properties with a bigger inhibition zone size compared to GIC only sample. The SEM morphology analysis showed higher number of cracks and spherical nHA particles on the surface of GIC with 4% nHA sample. In Energy Dispersive X-ray analysis, GIC with 4% nHA samples showed an increased atomic percentage of elements calcium, aluminium, silicone, fluorine and phosphorus compared to GIC only sample. The incorporation of 4% nHA into GIC has enhanced the cement morphology and biological properties, thus it is suitable to be used as an additive in GIC.

 

Keywords: Antibacterial; cytotoxicity; glass ionomer cement; morphology nanohydroxyapatite

 

REFERENCES

Alatawi, R.A.S., Elsayed, N.H. & Mohamed, W.S. 2019. Influence of hydroxyapatite nanoparticles on the properties of glass ionomer cement. Journal of Materials Research and Technology 8(1): 344-349.

Alobiedy, A.N., Al-Helli, A.H. & Al-Hamaoy, A.R. 2019. Effect of adding micro and nano-carbon particles on conventional glass ionomer cement mechanical properties. Ain Shams Engineering Journal 10(4): 785-789.

Arzanlou, M. & Imani Rad, H. 2021. Comparative assessment of fluoride released and antimicrobial effects of three types of glass ionomer cements on cariogenic dental bacteria: An in-vitro study. Journal of Mazandaran University of Medical Sciences 31(202): 126-135.

Chavez de Paz, L.E. 2007. Redefining the persistent infection in root canals: Possible role of biofilm communities. Journal of Endodontics 33(6): 652-662.

Chetty, A., Wepener, I., Marei, M.K., Kamary, Y. & Moussa, R.M. 2012. Synthesis, Properties and Applications of Hydroxyapatite. Hauppauge: Nova Science Publishers.

Da Silva, R.C. & Cristina Cilense, Z. 2006. Surface roughness of glass ionomer cements indicated for atrumatic restorative treatment (ART). Brazilian Dental Journal 17(2): 106-109.

Davidson, C.L. 2006. Advances in glass-ionomer cements. Journal of Applied Oral Science 14: 3-9.

Esteves Barata, T.J., Bresciani, E., Adachi, A., Fagundes, T.C., Ramos Carvalho, C.A. & Navarro, M.F.L. 2008. Influence of ultrasonic setting on compressive and diametral tensile strengths of glass ionomer cements. Materials Research 11(1): 57-61.

Farinawati, Y., Nurmimie, A., Nur Atmaliya, L., Shahrul Hisham, Z.A. & Rohaya, M.A.W. 2020. Scaffold selection for tissue engineering in dentistry. Medicine and Health 15(1): 34-53.

Garoushi, S., He, J., Vallittu, P.K. & Lasilla, L.V. 2018. Effect of discontinuous glass fibers on mechanical properties of glass ionomer cement. Acta Biomaterialia 4(1): 72-80.

Genaro, L.E., Anovazzi, G., Hebling, J. & Zuanon, A.C.C. 2020. Glass ionomer cement modified by resin with incorporation of nanohydroxyapatite: in vitro evaluation of physical-biological properties. Nanomaterials 10: 1412.

Gjorgievska, E., Van Tendeloo, G., Nicholson, J.W., Coleman, N.J., Slipper, I.J. & Booth, S. 2015. The incorporation of nanoparticles into conventional glass- ionomer dental restorative cements. Microscopy and Microanalysis 21(2): 392-406.

Glowacki, J. & Mizuno, S. 2008. Collagen scaffolds for tissue engineering. Biopolymers 89: 338-344.

Gupta, A., Singh, D., Raj, P., Gupta, H., Verma, S. & Bhattacharya, S. 2015. Investigaton of ZnO-hydroxyapatite nanocomposite incorporated in restorative glass ionomer cement to enhance its mechanical and antibacterial properties. Journal of Bionanoscience 9(3): 190-196.

Intan Zarina, Z.A., Thanaletchumi, M., Rohaya, M.A.W., Farinawati, Y. & Shahrul Hisham, Z.A. 2022. A comparative analysis of ascorbic acid-induced cytotoxicity and differentiation between SHED and DPSC. Current Stem Cell Research & Therapy 17(6): 576-588.

Lucas, M.E., Arita, K. & Nishino, M. 2003. Toughness, bonding and fluoride-release properties of hydroxyapatite-added glass ionomer cement. Biomaterials 24(21): 3787-3794.

Mahshid Mohammadi, B., Mohammad, A., Mohammad Bagher, R. & Parisa Golkar, T. 2012. Effect of incorporation of various amounts of nano-sized hydroxyapatite on the mechanical properties of a resin modified glass ionomer. Journal Dental School 30(4): 216-223

Manal, N.H., Farinawati, Y., Nur Atmaliya, L., Shahrul Hisham, Z.A. & Rohaya, M.A. 2021. Comparative evaluation of osteogenic differentiation potential of stem cells derived from dental pulp and exfoliated deciduous teeth cultured over granular hydroxyapatite based scaffold. BMC Oral Health 21(1): 1-13.

Moheet, I.A., Luddin, N., Ab Rahman, I., Masudi, S.M., Kannan, T.P. & Abd Ghani, N.R.N. 2018. Evaluation of mechanical properties and bond strength of nano- hydroxyapatite-silica added glass ionomer cement. Ceramics International 44(8): 9899-9906.

Molina, G.F., Cabral, R.J., Mazzola, I., Lascano, L.B. & Frencken, J.E. 2013. Mechanical performance of encapsulated restorative glass-ionomer cements for use with Atraumatic Restorative Treatment (ART). Journal of Applied Oral Science 21: 243-249.

Moshaverinia, A., Ansari, S., Moshaverinia, M., Roohpour, N., Darr, J.A. & Rehman, I. 2008. Effects of incorporation of hydroxyapatite and fluoroapatit nanobioceramics into conventional glass ionomer cements (GIC). Acta Biomaterialia 4(2): 432-440.

Najeeb, S., Khurshid, Z., Zafar, M.S., Khan, A.S., Zohaib, S., Martí, J.M.N., Sauro, S., Matinlinna, J.P. & Rehman, I.U. 2016. Modifications in glass ionomer cements: Nano-sized fillers and bioactive nanoceramics. International Journal of Molecular Sciences 17(7): 1134.

Nur Atmaliya, L., Rohaya, M.A.W., Shahrul Hisham, Z.A., Nurrul Shaqinah, N., Lau, S.F. & Farinawati, Y. 2022. Comparison between hydroxyapatite and polycaprolactone scaffolds in inducing osteogenic differentiation and augmenting maxillary bone regeneration. PeerJ 10: e13356.

Pagano, S., Chieruzzi, M., Balloni, S., Lombardo, G., Torre, L., Bodo, M., Cianetti, S. & Marinucci, L. 2019. Biological, thermal and mechanical characterization of modified glass ionomer cements: The role of nanohydroxyapatite, ciprofloxacin and zinc L-carnosine. Materials Science and Engineering C 94: 76-85.

Parisa, G., Omrani, L.R., Zohourinia, S., Ahmadi, E. & Asadian, F. 2021. Cytotoxic effect of addition of different concentrations of nanohydroxyapatite modified and conventional glass ionomer cements on L929 murine fibroblasts. Frontiers in Dentistry 18: 17.

Poorzandpoush, K., Omrani, L.R., Jafarnia, S.H., Golkar, P. & Atai, M. 2017. Effect of addition of nano hydroxyapatite particles on wear of resin modified glass ionomer by tooth brushing simulation. Journal of Clinical and Experimental Dentistry 9(3): e372.

Rahman, N.A.A., Matori, K.A., Zaid, M.H.M., Zainuddin, N., Aziz, S.A., Khiri, M.Z.A., Jalil, R.A. & Jusoh, W.N.W. 2019. Fabrication of alumino-silicate-fluoride based bioglass derived from waste clam shell and soda lime silica glasses. Results in Physics 12: 743-747.

Rohaya, M.A.W., Nurmimie, A., Shahrul Hisham, Z.A., Che Azurahanim, C.A. & Farinawati, Y. 2020. Effects of the sintering process on nacre-derived hydroxyapatite scaffolds for bone engineering. Molecules 25(14): 3129.

Rosenbach, G., Cal-Neto, J.P., Oliveira, S.R., Chevitarese, O. & Almeida, M.A. 2007. Effect of enamel etching on tensile bond strength of brackets bonded in vivo with a resin-reinforced glass ionomer cement. The Angle Orthodontist 77(1): 113-116.

Sasani, N., Khadivi Ayask, H., Zebarjad, S.M. & Vahdati Khaki, J. 2013. Characterization of rod-like high-purity fluorapatite nanopowders obtained by sol-gel method. Journal of Ultrafine Grained and Nanostructured Materials 46(1): 31-37.

Sidhu, S. & Nicholson, J. 2016. A Review of glass-ionomer cements for clinical dentistry. Journal of Functional Biomaterials 7: 16.

Souza-Zaroni, D., Christine, W., Nhani, V.T., Ciccone-Nogueira, J.C., Chinelatti, M.A., Palma-Dibb, R.G. & Corona, S.A.M. 2006. Shear bond strength of glass-ionomer cements to air-abraded dentin. Journal of Adhesive Dentistry 8(4): 233-237.

Sundaram, J., Durance, T.D. & Wang, R. 2008. Porous scaffold of gelatin–starch with nanohydroxyapatite composite processed via novel microwave vacuum drying. Acta Biomaterialia 4(4): 932-942.

Upadhya, P.N. & Kishore, G. 2005. Glass ionomer cement - The different generations. Trends in Biomaterials and Artificial Organs 18(2): 158-65.

Wan Jusoh, W.N., Matori, K.A., Zaid, M.H.M., Zainuddin, N., Khiri, M.Z.A., Rahman, N.A.A., Jalil, R.A. & Kul, E. 2021. Incorporation of hydroxyapatite into glass ionomer cement (GIC) formulated based on alumino-silicate-fluoride glass ceramics from waste materials. Materials 14(4): 954.

Zilberman, U. 2014. Ion exchanges between glass-ionomer restorative material and primary teeth components- an in-vivo study. Oral Biology and Dentistry 2(1): 1.

 

*Corresponding author; email: drfarinawati@ukm.edu.my

 

 

 

 

 

 

 

previous